Tuesday, 25 June 2019

An RF-Quiet Light Dimmer


This blog first appeared in February 2016 but is just as relevant today as it was then!


 I admit it. I have an extraordinarily kind next door neighbour!

Ever since erecting a new, much bigger LF antenna several years ago, she has allowed me to run its large, three-wire 100' tophat, directly over the top of her house to a tree on the far edge of her property. As well, she removed her only light dimmer, knowing that it was creating a LOT of nasty RF 'hash' throughout the LF / MF spectrum, seriously degrading my LF reception. To hear the RF noise-signature of a typical light dimmer, listen here, on the ARRL's helpful page of 'household' RFI recordings ... that's just how it sounded here as well!

She recently did a major renovation, which included a new multi-light dining-room fixture and expressed to me a desire to be able to dim it ... oh-oh, I was definitely not looking forward to this.

I did a little web-research and soon learned that some of the most RF-quiet dimmers were being produced by Lutron. One model in particular, claimed to pay special attention to RF noise-filtering and that was the "Centurion", whose smallest model is a 600 watt-capable unit, with a large finned heatsink front plate ... model #C-600P-WH.

I decided to order one from the only dealer I could find in Vancouver that seemed to carry this line of dimmers. The cost was just a little over $40 Canadian (sells for about $25 in the U.S.A.) ... cheap enough if it would do the job!


When the unit came in, I picked it up on my next ferry trip to the city and upon my return, installed it the following afternoon. Before doing the installation, I fired-up the receiving system, tuned to 300kHz, and with the baby monitor set up beside the speaker, took the portable monitor with me.

After installing the new dimmer, I turned on the baby monitor, held my breath ... and turned on the light fixture. Wow ... not a trace of hash could be heard! Adjusting the dimmer from high to low produced no difference in the noise level. I later did a more thorough bandscan and could find no evidence of RFI, on any frequency. The only RFI that I could detect was when placing my Sony ICF-2010 close to the actual dimmer. I was unable to detect any noise further than 6" away from the lights or the dimmer!

So it seems that this model can be highly recommended, for your own home or if you have a next door neighbour 'light-dimmer problem'.

Wednesday, 12 June 2019

Back To The Magic

The magic band has always had a strong pull on me, ever since being put under its spell in the late 60s. I quickly learned that the surest way to guarantee a band opening was to leave the house for a few hours. Invariably when returning, the other local 6m addicts would gleefully describe everything that you had ‘just missed’. The 6m gods were rarely forgiving and this unfailing behaviour became part of the band's mystique.



This odd love-hate relationship continues to this day but with the FT8 mode being used almost exclusively now on 6m, it’s your computer that now snickers at you for any untimely excursions from the shack ... showing you, in any delightful color scheme that you choose, all of the DX that you 'just missed' once again!

It happened to me again yesterday, while out in the yard stacking next winter's firewood.

It was just a short excursion, as the eastern stations were working Europeans and all of the VE4 beacons were very loud back here on the coast. The possibilities of a link to the European path kept my excursion to only 10 minutes but sure enough, there it was on my WSJT-X list of decodes .... several CQs from CT7ANG in Portugal! My laptop could barely stop giggling. This would have been the first PNW-EU QSO of the summer had I been maintaining vigilance!

163315 -14 0.1 738 ~ CQ CT7ANG IM67

I continued to stack firewood and to watch the band more closely, knowing that every once in awhile, for entertainment purposes, the prop gods will toss out a bone or two, just to keep you on the hook.

A later check indicated that CT1HZE’s CQs had been decoded just a few moments earlier ... there was renewed hope!


185100 -2 0.2 2134 ~ CQ NA CT1HZE IM57


Joe’s strong FT8 CQ popped-up again a few minutes later and he came right back to my initial call. Although that was it for the day, the 2019 PNW-EU path had begun!

courtesy: PSK Reporter

I’m still somewhat ambivalent about FT8 and its ‘coldness’ when it comes to person-to-person interaction, but since most of the DX action on 6m is now digital, it’s either embrace it or miss out. At the moment, I’m at least prepared to hug it and see how it behaves. If it puts more Europeans and new DXCCs into my magic band log, then that’s a worthwhile investment.

Unlike way too many others, I’m not prepared to let my computer endlessly CQ for hours at a time. In a crowded local environment, with big strong signals being the norm, this method of operating is simply disrespectful to other amateurs as this mostly useless CQing will usually make reception of any weaker signals impossible.

FT8 is a weak-signal mode and the interfaces used do not handle extremely strong local signals very well. I would urge others to think about this poor operating practice and adopt what has always proved to be the best tactic for catching DX ... listen, listen, listen. The same tactic works just as well on FT8 as it does on CW.

Back to stacking firewood but having tossed me a bone yesterday, I’m sure the prop gods will be out to get even for awhile!

Monday, 3 June 2019

The Enigmatic Heathkit CR-1 Crystal Radio

For the past several months my interest in ‘DX-crystal radio’ construction has been percolating once again. It began when I ran across an interesting description of Heathkit’s legendary CR-1, a double-tuned good performer and very much sought-after by collectors as well as by users. The article described one homebrewer’s attempt to duplicate the receiver and to learn more about the detector and antenna tuning ferrite-loaded coil's secrets.


When it comes to crystal radios, there is nothing revolutionary regarding the CR-1’s basic circuitry but for some odd reason, it has achieved cult-like status as well as high dollar value.


courtesy: Scotts Crystal Radios
I've been eager to get my mitts on one to see how it performs after reading of one DXer's fifty-eighth catch with his own CR-1!

The article that piqued my interest appears on 'Scott's Crystal Radios' website and makes for an inspirational read, eventually revealing the inside core arrangement of the ferrite-loaded tuned circuits via an actual X-ray of the device! By the way, if you are looking for a nice set of older headphones, Scott's website is the place to visit!






courtesy: Scott's Crystal Radios






Scott was eventually able to achieve performance equal to that of his borrowed CR-1, with his own slightly modified versions, all in a similar-sized footprint. Perhaps this is one reason why the CR-1 is so much sought-after, as good performance in a very small package is not the norm when it comes to crystal radios. It's usually a case of ‘the bigger, the better’ when it comes to performance.


A recent search of my junque box revealed several NIB ferrite loopsticks that would allow a potntial reproduction of this interesting circuit.


Several years ago I spent an eye-opening winter learning about DX crystal radios as up to that time I had always believed it would be impossible to hear anything other than strong local signals on a crystal radio. I quickly discovered that there was a very large Crystal Radio Yahoo Group where members were working at the leading edge of crystal radio design. I also found that the group sponsored an annual Crystal Radio DX Contest which inspired me to dig deeper.

It wasn’t too long before I decided to join the fun and attempt to build a crystal radio DX-machine but I was in for a few surprises and a long learning curve ... it seemed that hearing broadcast band ‘DX’ on a crystal radio (anything other than loud locals) was not going to be an easy task!

Over the course of several months I tried many types of variable capacitors, tank coil configurations and antenna tuning circuits. I even erected a dedicated antenna system for the various experimental circuits I was putting together ... an 'Inverted-L', 50’ straight up and 70’ horizontal, along with a ground rod connected to several buried radials.

I quickly learned about something I normally didn’t have to worry about when working with ‘active’ devices and that was overcoming system and component losses. In critical crystal radio design, it’s all about minimizing the losses in every stage and every component in the system since there are no amplifiers to help overcome these losses. Your system is only as good as the weakest link. In true crystal radio DXing, no active devices are permitted ... it’s just your crystal radio and the energy generated at some, hopefully far away, transmitter site!

After several months, I eventually ended up with a well-performing triple-tuned set that used lots of 'trapping' because of all of the very strong nearby signals here ... eight 50kW locals!



A description of the learning curve, with several do's and dont's to help new builders, can be found on my website here.

Back then, 80 stations were logged (from my location on Mayne Island in SW British Columbia) over the one-week Crystal Radio DX Contest.


CRYSTAL RADIO LOGBOOK


FRQ 
STATION
 LOCATION
POWER
540
CBK
WATROUS, SK
50KW
550
KARI
BLAINE, WA
2.5KW
560
KPQ
WENATCHEE, WA
5KW
570
KVI
SEATTLE, WA
5KW
580
KFXD
NAMPA, ID
5KW
580
KTMT
ASHLAND, OR
1KW
600
CKBD
VANCOUVER, BC
10KW
650
CISL
VANCOUVER, BC
10KW
670
KBOI
BOISE, ID
50KW
690
CBU
VANCOUVER, BC
50KW
730
CJNW
VANCOUVER, BC
50KW
750
KXL
PORTLAND, OR
20KW
770
CHQR
CALGARY, AB
50KW
780
KKOH
RENO, NV
50KW
790
KGMI
BELLINGHAM, WA
1KW
800
CKOR
PENTICTON, BC
500W
800
CHAB
MOOSEJAW, SK
10KW
810
KGO
SAN FRANCISCO, CA
50KW
820
KGNW
SEATTLE, WA
5KW
830
CKKY
WAINRIGHT, AB
3.5KW
840
KSWB
SEASIDE, OR
500W
840
CKBX
100 MILE HOUSE, BC
500W
850
KOA
DENVER, CO
50KW
860
KPAM
TROUTDALE, OR
10KW
870
KFLD
PASCO, WA
250W
880
KIXI
MERCER ISLAND, WA
10KW
880
COOL
EDMONTON, AB
50KW
890
CJDC
DAWSON CREEK, BC
10KW
900
CKMO
VICTORIA, BC
10KW
910
CKDQ
DRUMHELLER, AB
50KW
920
KXLY
SPOKANE, WA
5KW
930
KBAI
BELLINGHAM, WA
500W
940
CJGX
YORKTON, SK
50KW
950
KJR
SEATTLE, WA
50KW
960
CFAC
CALGARY, AB
50KW
980
CKNW
NEW WESTMINSTER, BC
50KW
1010
CBR
CALGARY, AB
50KW
1040
CKST
VANCOUVER, BC
50KW
1060
CKMX
CALGARY, AB
50KW
1070
CFAX
VICTORIA, BC
10KW
1090
KYCW
SEATTLE, WA
50KW
1130
CKWX
VANCOUVER, BC
50KW
1160
KSL
SALT LAKE CITY, UT
50KW
1170
KPUG
BELLINGHAM, WA
5KW
1180
KOFI
KALISPELL, MT
10KW
1190
KEX
PORTLAND, OR
50KW
1200
WOAI
SAN ANTONIO, TX
50KW
1210
KBSG
AUBURN, WA,
10KW
1210
KZTS
SUNNYSIDE, WA
1KW
1240
KGY
OLYMPIA, WA
1KW
1240
KOFE
ST. MARIES, ID
500W
1250
KKDZ
SEATTLE, WA
5KW
1250
KWSU
PULLMAN, WA
5KW
1260
CFRN
EDMONTON, AB
50KW
1260
KLYC
McMINVILLE, OR
850W
1270
CHAT
MEDICINE HAT, AB
10KW
1270
KTFI
TWIN FALLS, ID
1KW
1280
KIT
YAKIMA, WA
1KW
1290
KGVO
MISSOULA, MT
5KW
1290
KUMA
PENDLETON, OR
5KW
1290
KKSL
LAKE OSWEGO, OR
5KW
1300
KOL
SEATTLE, WA
5KW
1300
CJME
REGINA, SK
10KW
1310
CHLW
ST. PAUL, AB
10KW
1320
CHMB
VANCOUVER, BC
50KW
1340
KLKI
ANACORTES, WA
1KW
1360
KKMO
TACOMA, WA
5KW
1370
KAST
ASTORIA, OR
1KW
1410
CFUN
VANCOUVER, BC
50KW
1470
CJVB
VANCOUVER, BC
50KW
1510
KGA
SPOKANE, WA
50KW
1520
KKSN
OREGON CITY, OR
15KW
1530
KFBK
SACRAMENTO, CA
50KW
1550
KCCF
FERNDALE, WA
10KW
1590
KLIV
SAN JOSE, CA
5KW
1600
KVRI
BLAINE, WA
10KW
1620
KYIZ
RENTON, WA
1KW
1640
KPBC
LAKE OSWEGO, OR
1KW
1660
KXOL
BRIGHAM CITY, UT
1KW

Old notes indicate that there were 14 stations at S9 or higher, requiring heavy trapping to hear anything close to their frequencies. 

My recent interest made me wonder what the situation is today when it comes to the number of strong local ‘blowtorch’ signals, surely the bane of all crystal radio DXers? Although there have been a few changes over the years, a quick scan of the band during the prime DX evening hours found that although one of the blowtorch signals (at 600kHz) was now gone, another had appeared at 1200kHz ... sadly no net difference.

The top end of the band, always a prime area for good skywave DX, is unfortunately still dominated by a huge signal from KVRI just across the water near the Canadian / U.S. border. If KVRI were silent, the top end would be a wonderfully quiet hunting-ground for new catches. The new local blowtorch (CJRJ) on 1200 kHz will now cause problems for the middle of the band, which was always a good region for DX.

So it seems overall, there hasn’t been a huge change here other than in the middle of the band. It looks as though there are still some good watering-holes to be had but several traps will still be needed in any new system.

Once my present radio-bench project is finished (a '36 RK-39 crystal power oscillator) I’m looking forward to more research and design of a couple of new systems, starting with something similar to the CR-1 as well as some experimentation with toroidal coils. I always find the research and planning phase of any new project more interesting and fulfilling than the actual construction and implementation! Hopefully I’ll have something ready for the fall DX season!

Thanks to VA7MM, I will also have the loan of an original CR-1 next winter to make comparisons to any clone that I might build!

If building a DX-crystal radio is something that might interest you, there are several great websites offering inspiration and helpful info. The links for these may be found at the bottom of my own crystal radio page. As well, there are two active crystal radio groups on Facebook, where daily two-way discussion can be had.

Perhaps, with enough new interest, we can even revive the annual Crystal Radio DX Contest!

Monday, 20 May 2019

Hunting For NDBs In CLE244



This coming weekend will see another monthly CLE challenge. This time the hunting grounds will be split:    260.0 - 269.9 kHz and 440-1740kHz.

 

For those unfamiliar with this monthly activity, a 'CLE' is a 'Co-ordinated Listening Event', as NDB DXers around the world focus their listening time on one small slice of the NDB spectrum.

If you've been meaning to participate in  CLE, then maybe this weekend is a fine time to try! Lately, we've had a lot of first time submissions so you won't be alone!

As well, if you're trying to learn CW, copying NDBs is perfect practice as the identifier speed is generally slow and the letters are repeated again every few seconds!

A nice challenge in this one is to hear VR - 266 kHz. 'VR' is the outer marker for the '26s' at Vancouver International (CYVR) and is located in Richmond, BC.

'VR' runs 50W into a closed triangular loop but is well-heard throughout North America having been reported as far as North Carolina to the east and Hawaii to the west.. Listen for its upper-sideband CW identifier (with your receiver in the CW mode) on 266.404 kHz.

At this time of the season, summer lightning storms may provide additional listening challenges but maybe we will get lucky. Propagation can often be as good as mid-winter if the lightning cooperates.

When tuning for NDBs, put your receiver in the CW mode and listen for the NDB's CW identifier, repeated every few seconds. Listen for U.S. NDB identifiers approximately 1 kHz higher or lower than the published transmitted frequency since these beacons are modulated with a 1020 Hz tone approximately.

For example, 'AA' near Fargo, ND, transmits on 365 kHz and its upper sideband CW identifier is tuned at 366.025 kHz while its lower sideband CW ident can be tuned at 363.946 kHz. Its USB tone is actually 1025 Hz while its LSB tone is 1054 Hz.

Often, one sideband will be much stronger than the other so if you don't hear the first one, try listening on the other sideband.

Canadian NDBs normally have an USB tone only, usually very close to 400 Hz. They also have a long dash (keydown) following the CW identifier.

All NDBs heard in North America will be listed in the RNA database (updated daily) while those heard in Europe may be found in the REU database. Beacons heard outside of these regions will be found in the RWW database.

From CLE organizer Brian Keyte, G3SIA, comes the details:


Hello all,

Our end-of-May Coordinated Listening Event will soon be here.
It will be a hunt for normal NDBs in two contrasting frequency ranges.
As always, first-time CLE logs will be extra welcome.

    Days:    Friday 24 May - Monday 27 May
    Times:   Start and end at midday, your local time
    Targets: Normal NDBs  (not NAVTEX or *amateur beacons)
    QRG:     260.0 -   269.9 kHz
     plus:     440.0 -  1740.0 kHz

These are interesting frequencies for most of us, with some quiet
wide-open spaces.  We last used them for CLE228 in January 2018.

Most of us should be able to hear some NDBs in both ranges, though
Europe only has a handful in the '260s'.  From 440 kHz onwards, North
America has a few, mostly around 510-530 kHz, but listeners in Eastern
Europe have a BONANZA – probably over 400 active NDBs in Russia
(RUS + RSE) alone, though for most of us in Western Europe many of
them are hiding among Europe's Medium Wave Broadcast Stations.

*(There used to be amateur beacons using CW on frequencies mainly
around 474 - 478 kHz.  Over the years they have been moving to use
other frequencies and modes. Last time we only heard three and only
in Europe.  So we’ll no longer be listening for Amateur signals in this
CLE's frequency range)

Please send your CLE log to NDB List, if possible as a plain text email
and not in an attachment, with 'CLE244 FINAL' at the start of its title.

Show on EVERY line of your log:
  #   The Date  e.g. '2019-05-25', etc.  (or just '26')
  #   UTC  (the day changes at 00:00 UTC).
  #   kHz  - the beacon's nominal published frequency if you know it.
  #   The Call Ident.

Those main items can be in any order within themselves, but BEFORE any
other optional details (Location, Distance, etc.) later in the same line.

As always, give details in your log of your own location and the receiver,
aerial(s), etc. that you were using.
If you send any interim logs, be sure to send a FINAL (complete) one.

You can find anything else to help you, including CLE seeklists for your
part of the World, from the CLE page, http://www.ndblist.info/cle.htm

Please look out for extra information in the Final Details in a few days
with advice about log-making, etc.

73
   Brian
---------------------------------------------------------------------
From:      Brian Keyte G3SIA           ndbcle’at’gmail.com
Location:  Surrey,  SE England          (CLE coordinator)
--------------------------------------------------------------------- 


(Reminder:  You could use any one remote receiver for your loggings,
stating its location and owner - with their permission if required.
A remote listener may NOT also use another receiver, whether local
or remote, to obtain further loggings for the same CLE).

These listening events serve several purposes. They:
  • determine, worldwide, which beacons are actually in service and on-the-air so the online database can be kept up-to-date
  • determine, worldwide, which beacons are out-of-service or have gone silent since the last CLE covering this range
  • will indicate the state of propagation conditions at the various participant locations
  • will give you an indication of how well your LF/MF receiving system is working
  • give participants a fun yet challenging activity to keep their listening skills honed

The NDB List Group is a great place to learn more about the 'Art of NDB DXing' or to meet other listeners in your region. There is a lot of good information available there and new members are always very welcome. As well, you can follow the results of other CLE participants from night to night as propagation is always an active topic of discussion.

You need not be an NDB List member to participate in the CLEs and all reports, no matter how small, are of much value to the organizers. 

Remember - 'First-time' logs are always VERY welcome!

Reports may be sent to the NDB List Group or e-mailed to CLE co-ordinator, Brian Keyte (G3SIA), whose address appears above. If you are a member of the group, all final results will also be e-mailed and posted there.

Please ... give the CLE a try ... then let us know what NDB's can be heard from your location! Your report can then be added to the worldwide database to help keep it up-to-date.

Have fun and good hunting!

Thursday, 16 May 2019

How Low Can They Go!

courtesy: Roger, G3XBM



For the past few years several amateurs in Europe and along the east coast of North America have been experimenting on the ‘dreamers band’, 8.7 - 9.1 kHz.








Some rather surprising distances have been covered on these frequencies in spite of the dreadfully poor efficiencies realized with backyard antenna systems.

Previous 'earth-mode' backyard experiments on VLF by Roger, G3XBM, are well documented on his website along with details on his simple homebrew gear used to send signals across town using the earth. Following Roger's steady progression via his previous blog spots makes for fascinating reading ... there is some really great stuff here making it difficult to not jump in and take the plunge yourself.

This experimental field presents the ideal opportunity for a couple (or several) local amateurs to work together at exchanging signals on these low frequencies with simple home built equipment.

A major contributor to the present state of the ‘VLF / ULF amateur art’ is Stefan, DK7FC and a posting this week to the old RSGB's (blacksheep) LF reflector makes some of his earlier work pale by comparison as he announced the reception of his 270Hz signal (the 1110km band!) at a distance of  177 km!

Just a note from a recent experiment at 270.1 Hz.

On Sunday morning, 2019-05-12_10:34,+150m, I've done a carrier transmission on my ground loop antenna again. I did not expect more than, hopefully, a detectable spectrum peak in 57.6 km distance, i.e. at my tree site. The tree receiver site was listening and recording data using vlf-rx tools.
One E field antenna and two orthogonal loops were listening. The loops have been improved recently! They consist out of a single circular turn of 1.2 m diameter using 10mm diameter copper tube (about 25 mm^2). It is a closed loop, non-resonated, with an impedance matching transformer. This transformer previously had 1:100 turns. Now it (they) has 2:240 turns, i.e. two turns primary (out of 14mm^2, AWG6). This improved the sensitivity below 2 kHz significantly ( abt. 4...5 dB).
Furthermore the TX antenna length and angle has been improved, resulting in about +3 dB more signal strength on the RX site!

In a previous experiment at 270.1 Hz, some month ago, there was no result at all, not the weakest trace, despite excessive tweaking of all parameters. So the question was, will the improvements result in a detectable signal now?

Several things went wrong in that experiment. I forgot a bag containing important equipment such as the power supply for the netbook that generates the carrier signal. Also the output power was not as high as planned, just about 380 W, giving 2.2 A antenna current (I measured 64.7 V at 1 A DC). Anyway i managed to improvise so the experiment was started, but with some hours of delay which meant i higher QRN background level. Then, on the WLAN link to the tree, there were several interruptions of the stream (i'll move to 5 GHz very soon!). I even got some QRM from my battery charger for some short time periods (forgot to disable the charger remotely). So there were several factors that could have been improved or avoided. And the middle of May is not the ideal time anyway.

Well, 270.1 Hz, that's the 1110 km band! The far field begins at 177 km distance, i.e. i am clearly in the near field here. Thus, from a 'magnetic' TX antenna, we would expect that the signal is mainly detectable on the H field, i.e. the loop antennas.
The first interesting results is that this expectation is actually confirmed. There is nothing detectable on the E field but the carrier S/N in the H fields is close to 10 dB in the first run. Mixing the H fields and tweaking the filters rises the carrier S/N to 10.7 dB, see attachment.

So far not really an undoubtedly detection but it is a candidate for optimism! With a few less problems during the experiment there is a chance for 14 dB SNR. Also, there is quite much sideband QRM around 300 Hz which makes 270 Hz a bit harder to work on.

73, Stefan

Saturday, 4 May 2019

More 'Hydroponic' RF

courtesy: ARRL

Today's blog is a repost from August, 2015.

I see that the ARRL has filed three more formal complaints to the FCC concerning the bone-crushing HF emissions being produced by off-the-shelf grow light ballasts. The complaint also includes detailed lab data collected on all three devices and it is not pretty. One wonders why it is necessary at all that the ARRL be the industry watchdog instead of the FCC ... why aren't they being more diligent in filtering out these products before they hit the market? If importers and dealers are simply bypassing regulations for the sake of a quick-buck, then heavy fines must be imposed until someone 'gets the message'.

Some of the test products were ordered and purchased through Amazon and through Sears ... the ARRL's thorough report makes it obvious that rules are being ignored and amateurs are paying the price.

“The level of conducted emissions from [these devices] is so high that, as a practical matter, one RF ballast operated in a residential environment would create preclusive interference to Amateur radio HF communications throughout entire neighborhoods,” ARRL General Counsel Chris Imlay, W3KD, wrote in each complaint. The devices exceeded conducted emission limits under all test conditions, “sometimes by extreme margins, throughout most of the HF range ...”


In a similar vein as its recent complaint about marketing of certain RF lighting devices by The Home Depot, the ARRL pointed out that there were no FCC labels on two of the devices mentioned nor any FCC compliance information “anywhere in the documentation, or in or on the box, or on the device itself,” in violation of FCC Part 18 rules.

The League asked the FCC to require removal of all such illegal “grow light” devices from retail sale and marketing and the recall of those devices already sold or available for retail sale, and it said the device importers should be subject to a forfeiture proceeding.

With the proliferation of both legal and illegal 'hydroponic' operations, this kind of QRN is probably just the tip of the iceberg. It's good to see the ARRL slowly pounding away at the rule-breakers on behalf of American amateurs.

I see these same devices being sold on E-Bay, where presumably, they could be purchased worldwide and installed anywhere. As well, several of the U.S. online dealers state "We ship to Canada" ... just great.

Hopefully Industry Canada and RAC are gearing-up for the fight.

Wednesday, 24 April 2019

Hunting For NDBs In CLE243

YPM - 274 courtesy: VE3GOP



This coming weekend will see another monthly CLE challenge. This time the hunting grounds will be 270.0 - 319.9 kHz.

 





For those unfamiliar with this monthly activity, a 'CLE' is a 'Co-ordinated Listening Event', as NDB DXers around the world focus their listening time on one small slice of the NDB spectrum.

If you've been meaning to participate in  CLE, then maybe this weekend is a fine time to try!

A nice challenge in this one is to hear YPM - 274, located in northwest Ontario near Pikangikum.

'YPM' runs just 25W into a 100' vertical but is well-heard throughout North America. Listen for its upper-sideband CW identifier (with your receiver in the CW mode) on 274.368 kHz.

Summer lightning storms may provide additional listening challenges but maybe we will get lucky.

When tuning for NDBs, put your receiver in the CW mode and listen for the NDB's CW identifier, repeated every few seconds. Listen for U.S. NDB identifiers approximately 1 kHz higher or lower than the published transmitted frequency since these beacons are modulated with a 1020 Hz tone approximately.

For example, 'AA' near Fargo, ND, transmits on 365 kHz and its upper sideband CW identifier is tuned at 366.025 kHz while its lower sideband CW ident can be tuned at 363.946 kHz. Its USB tone is actually 1025 Hz while its LSB tone is 1054 Hz.

Often, one sideband will be much stronger than the other so if you don't hear the first one, try listening on the other sideband.

Canadian NDBs normally have an USB tone only, usually very close to 400 Hz. They also have a long dash (keydown) following the CW identifier.

All NDBs heard in North America will be listed in the RNA database (updated daily) while those heard in Europe may be found in the REU database. Beacons heard outside of these regions will be found in the RWW database.

From CLE organizer Brian Keyte, G3SIA, comes the details:

 Hello all

Our 243rd co-ordinated listening event is this weekend, covering a 50 kHz
frequency range - about three times wider than usual. 

    Days:     Friday 26 April - Monday 29 April
    Times:   Start and end at midday, your LOCAL time
    Range:   270.0 - 319.9 kHz  (NDB signals only)

In part of the frequency range it might be quite a challenge to tease out
the NDB signals from among the DGPS ones.
Any first-time CLE logs will be very welcome, as always.

Please log the normal NDBs you can identify that are listed in the range
(it includes 270 kHz but not 320 kHz).

Please send your CLE log to NDB List, if possible as a plain text email
and not in an attachment, with 'CLE243 FINAL' at the start of its title.

Show on EVERY line of your log:
  #   The Date  e.g. '2019-04-26', etc.  (or just '26')
  #   UTC  (the day changes at 00:00 UTC).
  #   kHz  - the beacon's nominal published frequency if you know it.
  #   The Call Ident.

Those main items can be in any order within themselves, but BEFORE any
other optional details (Location, Distance, etc.) later in the same line.

As always, give details in your log of your own location and the receiver,
aerial(s), etc. that you were using.
If you send any interim logs, be sure to send a FINAL (complete) one.

You can find anything else to help you, including CLE seeklists for your
part of the World, from the CLE page, http://www.ndblist.info/cle.htm

Please look out for our 'Any More Logs?' email at about 17:00 UTC on
Tuesday so that you can check that your CLE log has been found OK.

Do make sure that your log has arrived at the very latest by 08:00 UTC
next Wednesday, 1st May.
We are hoping to make all the combined results within a day or two.

Enjoy your listening
Brian and Joachim

-----------------------------------------------------------------
From:      Brian Keyte G3SIA      ndbcle'at'gmail.com
Location:  Surrey,  SE England    (CLE coordinator)
-----------------------------------------------------------------

(Reminder:  You could use any one remote receiver for your loggings,
stating its location and owner - with their permission if required.
A remote listener may NOT also use another receiver, whether local
or remote, to obtain further loggings for the same CLE).

These listening events serve several purposes. They:
  • determine, worldwide, which beacons are actually in service and on-the-air so the online database can be kept up-to-date
  • determine, worldwide, which beacons are out-of-service or have gone silent since the last CLE covering this range
  • will indicate the state of propagation conditions at the various participant locations
  • will give you an indication of how well your LF/MF receiving system is working
  • give participants a fun yet challenging activity to keep their listening skills honed

The NDB List Group is a great place to learn more about the 'Art of NDB DXing' or to meet other listeners in your region. There is a lot of good information available there and new members are always very welcome. As well, you can follow the results of other CLE participants from night to night as propagation is always an active topic of discussion.

You need not be an NDB List member to participate in the CLEs and all reports, no matter how small, are of much value to the organizers. 

Remember - 'First-time' logs are always VERY welcome!

Reports may be sent to the NDB List Group or e-mailed to CLE co-ordinator, Brian Keyte (G3SIA), whose address appears above. If you are a member of the group, all final results will also be e-mailed and posted there.

Please ... give the CLE a try ... then let us know what NDB's can be heard from your location! Your report can then be added to the worldwide database to help keep it up-to-date.

Have fun and good hunting!